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1. UNCERTAINTY IN EMISSION
SCENARIOS



Emissions (GtC)

What are the RCP scenarios?
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Van Vuuren et al 2011, Figure 6



How were the RCPs developed?

Step 1: choosing four target radiative forcing
levels by 2100.

e “The review considered 324 scenarios, 37 of
which (from 7 modeling teams) met the
selection criteria. Based on the design criteria
and discussions at an IPCC expert meeting in
September 2007 (Moss et al. 2008), a total of
4 RCP radiative forcing levels were chosen”

— (Van Vuuren et al 2011, p 11)



Step 2: choosing 4 scenarios from 4
different IAM models were chosen
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What does the range
of the RCPs mean?

* 10-90% percentile of scenarios in published
papers does not necessarily span the 10-90%
range of possible futures.

 “The RCPs should not be interpreted as
forecasts or absolute bounds, or be seen as
policy prescriptive.”
— (Van Vuuren et al 2011, p 26)

Van Vuuren, Detlef P., et al. "The representative concentration pathways: an
overview." Climatic change 109.1-2 (2011): 5.



What is the probability of the RCP
scenarios?

* "No probabilities or likelihoods have been
attached to the alternative RCP scenarios (as
was the case for SRES scenarios). Each of them
should be considered plausible, as no study
has questioned their technical feasibility”

— Collins et al 2013, p 1038

Collins, M., et al 2013: Long-term Climate Change: Projections, Commitments and Irreversibility.
(Chapter 12 In IPCC ARS Climate Change 2013: The Physical Science Basis)



Important questions for navigating
uncertainty in future sea levels

1. How much should we trust that the RCP
scenarios span the relevant range of possible
outcomes?

2. How should we make decisions that are
based on the non-probabilistic RCP
scenarios?



2. UNCERTAINTY IN SEA LEVEL
PROJECTIONS
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” For the period 2081-2100 relative to 1986—2005,

the rise will likely be in the ranges of 0.26 to 0.55 m for RCP2.6,
and of 0.45 to 0.82 m for RCP8.5 (medium confidence)”
(IPCC 2014, p 13).

IPCC, 2014: Climate Change 2014: Synthesis Report.



But what does the IPCC AR5 (2013)
numbers mean?

* “The upper boundary of the AR5 “likely” range
should not be misconstrued as a worst-case
upper limit, as was done in Kerr’s story as well as
elsewhere in the media and blogosphere.”

— (Church et al. 2013b, p 1445).

 “The IPCC statements on uncertainty mean that
there is “roughly a one-third probability that sea-
level rise by 2100 may lie outside the ‘likely’
range”

— (Church et al. 2013b, p 1445).

Church, John A., et al. "Sea-level rise by 2100." Science 342.6165 (2013b): 1445-
1445.
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Pfeffer et al (2008) has been used as a
“worst-case” scenario

Table 3. SLR projections based on kinematic sce-
narios. Thermal expansion numbers are from (22).

* The authors “conclude SLR equivalent (mm)
Low 1 Low 2 High 1

that increases in excess Greenland
Dynamics 93 93 467
of 2 meters are SMB noon N
. Iy Greenland total 165 165 538

physically untenable. Antarctica
P1G/Thwaites dynamics 108 394
(p 1340) Lambert/Amery dynamics 16 158
Antarctic Peninsula 12 59

dynamics
SMB 10 10
Antarctica total 146 128 619
Glaciers/ice caps

Dynamics 94 471
SMB 80 80
GIC total 174 240 551
Thermal expansion 300 300 300
Total SLR to 2100 785 833 2008

Pfeffer, W. T., Harper, J. T., & O’Neel, S. (2008). Kinematic constraints on glacier contributions to
21st-century sea-level rise. Science (New York, N.Y.), 321(5894), 1340-3.



Sriver et al 2013: thermal expansion
could be +55 cm instead of +30cm
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Coastal defense design for 1 in 50 year
flooding risk assuming 2 m SLR scenario
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Major sources of uncertainty in
projections of future GMSLR

* Uncertainty in input parameters

— E.g. the span of the RCP-scenarios
 Uncertainty in model variables

— e.g. thermal expansion (Sriver et al 2012).
 Uncertainty in model structure

— e.g.inclusion of phenomena such as “Marine ice sheet
and ice cliff instabilities” (De Conto & Pollard 2016)

How much should we trust the probabilities of return
times if they in turn are based on very uncertain GMSLR
projections?



3. SO WHAT TO DO?



Robust decision-support approaches

Robust Decision Making (RDM; Lempert 2002;
Groves and Lempert 2007)

Information gap (Ben-Haim 2004)

Many-Objective Robust Decision Making
(MORDM; Kasprzyk et al. 2013)

Decision scaling (Brown et al. 2012)

Dynamic Adaptive Policy Pathways (DAPP;
Haasnoot et al. 2013).



Three “core principles of robust
decision support approaches”

1. Embrace uncertainties by considering the relevant
types and full ranges of uncertainties.

2. Use a bottom-up process that starts from the
specific decision context by analysing the
consequences of different options.

3. Find static or flexible strategies that are robust in
that they reduce vulnerability to uncertainty.

Carlsson-Kayama A, Wikman-Svahn, P, Mossberg Sonnek, K, “We want to know where the
line 1s”: Comparing current planning for future sea-level rise with three core principles of
robust decision support approaches, Journal of Environmental Planning and Management,
Accepted



1. Embrace uncertainties
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Adapted from Maier et al 2016, Figure 1.

Maier, H.R., J.H. Guillaume, H. van Delden, G.A. Riddell, M. Haasnoot, and J.H. Kwakkel. 2016.
“An Uncertain Future, Deep Uncertainty, Scenarios, Robustness and Adaptation: How Do they Fit
Together?” Environmental Modelling & Software 81: 154—164.



2. Use a bottom-up approach

In contrast to standard “top-down, science first,
predict then act, scenario led” approaches.

Bottom-up approaches start from the decision-
making context.

ldentify relevant vulnerabilities, potential
solutions and critical tipping-points when the
solutions fail.

Also called “assess-risk-of-policy framing, policy-
first or tipping-point” approaches



3. Find static or flexible strategies
that are robust against uncertainty

* A static approach is a predetermined strategy
that works satisfactorily under the full range
of uncertain outcomes.

* A flexible approach consists of several
different options for different future
circumstances, and a switch can be made
between the options, depending on how the
future unfolds.



Different situations may require
different approaches
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Stephens, S., R. Bell, and J. Lawrence. 2017. “Applying Principles of Uncertainty within Coastal Hazard
Assessments to Better Support Coastal Adaptation.” Marine Sciences and Engineering 5: 20. Figure 2.



SUMMARY



1. There are many influential sources
of uncertainty in GMSLR projections

Input parameters

— E.g. the span of the RCP-scenarios
Model variables

— e.g. thermal expansion (Sriver et al 2012).

Model structure

— e.g. inclusion of phenomena such as “Marine ice
sheet and ice cliff instabilities” (De Conto & Pollard
2016)

We should accept the uncertainties and not
pretend that we can predict the future with
great precision.



2. But new approaches and solutions
for better managing uncertainty exist!

Robust decision support approaches:
1. Embrace uncertainty
2. Use a “bottom-up” process

3. Aim to find options that are robust against
uncertainty.

e Different situations might require different
approaches.

* A wider application of these new approaches can
likely lead to creative solutions and be instrumental
for better navigation in the abyss of uncertainty in
future sea levels!



